State Space Least Mean Fourth Algorithm for Dynamic State Estimation in Power Systems

نویسندگان

  • Arif Ahmed
  • Muhammad Moinuddin
  • Ubaid M. Al-Saggaf
چکیده

Power system dynamic state estimation (DSE) has always been a critical problem in studying power systems. One of the essential parts of power systems are synchronous machines. In this work, we dealt with the problem of DSE of a synchronous machine by introducing a novel state space-based least mean fourth (SSLMF) algorithm. The rationale behind the proposed algorithm is the fact that a power system may encounter non-Gaussian disturbances/state errors and the least mean fourth algorithm is proven to be better in such environments. Moreover, we have also introduced a normalized version of the proposed algorithm, namely state space normalized least mean fourth (SSNLMF) algorithm to deal with the stability issue under Gaussian disturbances. Another motivation for developing the SSLMF algorithm is its simplicity as compared to other model-based nonlinear filtering algorithms such as Kalman filter, extended Kalman filter (EKF). Moreover, we also investigate the performance of the recently introduced state space least mean square (SSLMS). Performance of the SSLMF and the SSLMS is compared with existing EKF in both Gaussian and non-Gaussian noise environments. Extensive simulation results are presented which show superiority B Muhammad Moinuddin [email protected] Arif Ahmed [email protected] Ubaid M. Al-Saggaf [email protected] 1 The Electrical and Computer Engineering Department, King Abdul Aziz University, Jeddah 21859, Saudi Arabia 2 Center of Excellence in Intelligent Engineering Systems (CEIES), King Abdul Aziz University, Jeddah 21859, Saudi Arabia of the proposed algorithms, and hence, it verifies our rationale behind the work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Advanced State Estimation Method Using Virtual Meters

-  Power system state estimation is a central component in energy management systems of power system. The goal of state estimation is to determine the system status and power flow of transmission lines. This paper presents an advanced state estimation algorithm based on weighted least square (WLS) criteria by introducing virtual meters. For each bus of network, except slack bus, a virtual meter...

متن کامل

Robust state estimation in power systems using pre-filtering measurement data

State estimation is the foundation of any control and decision making in power networks. The first requirement for a secure network is a precise and safe state estimator in order to make decisions based on accurate knowledge of the network status. This paper introduces a new estimator which is able to detect bad data with few calculations without need for repetitions and estimation residual cal...

متن کامل

Rotated Unscented Kalman Filter for Two State Nonlinear Systems

In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...

متن کامل

On Line Electric Power Systems State Estimation Using Kalman Filtering (RESEARCH NOTE)

In this paper principles of extended Kalman filtering theory is developed and applied to simulated on-line electric power systems state estimation in order to trace the operating condition changes through the redundant and noisy measurements. Test results on IEEE 14 - bus test system are included. Three case systems are tried; through the comparing of their results, it is concluded that the pro...

متن کامل

Rcd Rules and Power Systems Observability

Power system state estimation is a process to find the bus voltage magnitudes and phase angles at every bus based on a given measurement set. The state estimation convergency is related to the sufficiency of the measurement set. Observability analysis actually tests this kind of problem and guarantees the state estimation accuracy. A new and useful algorithm is proposed and applied in this pape...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015